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***Block 20, continued:

efficient processing. Reductions of the satisfiability problem
show that finding the proper lexical-surface correspondence in a
two-level generation or recognition problem can be computationally
difficult. However, another source of complexity in the existing
algorithms can be sharply reduced by changing the implementation
of the dictionary component. A merged dictionary with bit-vectors
reduces the number of choices among alternative dictionary subdivisions
by allowing several subdivisions to be searched at once.
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1. Introduction

The "dictionary lookup" stage in a sophisticated natural-language system can involve
much more than simple information retrieval. In text, the words that the system knows may
show up in heavily disguised form. Inflectional endings such as tense mid plural markings may
be present; the addition of prefixes and suffixes may change part-of-spech mid meaning in

systematic ways; in many languages words may have unrelated clitics attached. The addition
of prefixes, suffixes, and endings is often accompanied by spelling changes as well; in English,
try.s becomes tries and dig+er becomes digger. The rules of spelling change can be rather
complex.

Superficially, it seems that word recognition might potentially be complicated and dif-
ficult. This paper examines the question more formally by invetigating the computational
characteristics of the "two-level" model of morphological processes (§2). Given the kinds of
constraints that can be encoded in the model, how difficult can it be to translate between
lexical and surface forms? Although the use of finite-state machinery in the two-level model
gives it the appearance of. computational efficiency, the model itself does not guarantee ef-
ficient processing. Taking the KIMMO system (Karttunen, 1983) for concreteness, sections 4
and 6 will show that the general problem of mapping between lexical and surface forms in two-
level systems is computationally difficult in the worst case. If null characters are excluded,
the problem is At P-complete. If null characters are completely unrestricted, the problem is
PSPACE-complete and thus probably even harder in the worst case. The fundamental diffi-
culty of the problems does not seem to be a precompilation effect (§5).

1.1. Morphological analysis -

The word-level processing carried out by a natural-language system is formally a type of
morphological analysis, concerned with recovering the internal structures of input words. For
example, singing can be recognized as an inflected form of the verb sing, while unhappy
can be analyzed as un~happy. However, the nmorphological component cannot break words up
blindly; despite appearances, duckling is not the -ing form of a verb. The morphological
analyzer must know the ba.sic words of the language in addition to the prefixes and suffixes. In
fact, analysis must be guided by more specific constraints as well. Not every word can combine
with every affix; it would be an error to analyze unit as unit or beer as be~er (compare
doer).

The number of inflected forms of a given word is smaller in English than in many other
languages. As a result, for a system with smuall scope it often suffices to trivialise morphological
analysis by listing all inflected forms in the dictionary directly. The trivial approach is not
feasible for heavily inflected languages such as Finnish, in which a word can have thousands
of possible forms. In such cases, both practicality and elegance require a more systematic
treatment in terms of inflectional endings, mood and tense markers, clitics, and so forth. 3

The problem of recovering the internal structures of words can take an extreme form 03
in languages that allnv productive compounding. Kay and Kaplan (1982) illustrate such a
situation with the German word Lebensversicherungagesellschaftsangestellter, which
means life insurance eovnqany Cmployf:c. An exhaustive dictimary is impractical when such
free compounding is possible.

Availabiflty Codes
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1.2. Spelling changes

Besides knowing the stems, affixes, and co-occurrence restrictions of a language, a success-
ful morphological analyzer must take into account the spelling chan ges that often accompany
the addition of suffixes and similar elements.' The program must expect love*ing to appear
as loving, f ly's as f lies, lie'ing as lying, and big+er as bigger. Its knowledge must be
sufficiently sophisticated to distinguish such surface forms an hopped I(= hop.*d) and hoped
(= hopeeed). Cross-linguistically, spelling-change processes may span either a limited or a
more extended range of characters (§ 1.2. 1). and the material that triggers a change may occur
either before or after the character that is affected (§1.2.2). Complex copying processes (11.2.A)
may be found in addition to simpler, more specific changes.

1.2.1. Local and long-distance processes

The spelling changes associated with the addition of English suffixes are local in the sense
that they do not affect letters far away from the word- -suffix boundary. However, there are
proceses. in other languages that operate over longer distances. The spelling of Turkish suffixes
is systematically affected by luowel harmony processes, which require the vowels in a word to
agree in certain respects.' The vowels that appear in a typical suffix are not completely
determined by the suffix, but are determined in part by the rules of vowel harmony. The suffix
that Underhill (1976) writes as -slnlz may appear in an actual word as -siniz, -sunsaz, -

siinflz, or -s ini z depending on the preceding vowel. Turkish words may contain large numbers
of suffixes, and the effects of vowel harmony can propagate for long distances. (Hungarian
suffixes display similar changes.)

1.2.2. Left and right context

Local spelling changes often depend on right context as well as left context; for instance,
carry~ed changes y to i but carry~ing retains y. Less commonly, long-distance changes can
also be triggered by material to the right." Verb stems in the Australian language Waripiri
display a regressive change of i to u triggered by a tense suffix containing a nasal u; thus the
imperative forum of throw is kiji-ka, but the past-tense form is kuju-rnu (Nash, 19M0:84).
As illustrated, this harmony process can affect more than one i in the verb stenm. It can also
propagate through the element -rni that can appear between the verb stem and the tense

'Spelling-change procems actually represent a superficial amalgam of phonological changes and ortho-
graphic conventions. In this paper, theee two asepects of spelling changes will riot he distinguished. The
plionology and the orthography oif a language do Riot have the samie statup for linguistics, but the differences
are not relevant for present purposes. Note also that it is the surface mpIIIg of a word that will be presented
to a programi that. analyzes written text.

'mFor details of this process, see Underhill (1978), Clements and Semer (1962), and nunmous references cited
therein.

- -. ..- 'Many rtirrent analyses of vowel harmony take it to be a fuzeelanentally nondirectional process, even in
langunages in which it always' appears to operate. from left to right. For example, it appears as though the
influence of root vowelis son affix vowel always proceed.. from lef to right in TMirkish, but this is because
Ttirkiph lathsl prefixest. (Ol',entt and Sveser (1062:2401f) lisIs at process of colloquial T urkish in which a
vowel1 iss insertedl between the initial letterso of certain wenrds. The choice of vowel is dietermained by the usual
harmony rulest oif Turkish, but osperating from right to left. in this case. See also Poser (1962).
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ending. (Warlpiri also has another long-distance harniony process, which operates from right
to left.)

Other languages provide further examples of long-distance changes that are conditioned
by material to the right. Kay and Kaplan (1982) mention a vowel-change process in Icelandic
that causes vowels in the middle of a word to depend on the vowels in a following suffix. The
inflectional system of German also involves vowel changes. Poser (1982:131ff) discusses an
extreme example of long-distance right-to-left harmony that occurs in the language Chumash.
The process that lie describes changes a to a throughout the entire word when an a occurs in
a suffix; thus s+lu+sisin+wai (39+all+grow awry+pavt) becomes Blusilinwal (it is all grown
awry).

1.2.3. Right context and processing ambiguity

The existence of changes that depend on right context implies that the lexical-surface
correspondence for a particular character cannot always be determined when the character is
first seen in a left-to-right scan. However, right context is not crucial for the occurrence of
this difficulty. The same kind of local ambiguity can arise even when spelling changes do not
depend on right context.

Suppose we were to remove the dependence of the y-to-i change on right context by con-
sidering a rule system in which y always changes to i after p.4 There could still be uncertainty
about how analysis should proceed. A surface string beginning sp.... could correspond to a
lexical string spy... as in spies, but it could equally well correspond to api... as in spider
or spiel. In general, analysis may proceed several characters beyond a choice point before it
becomes apparent which choice is correct. This is especially true with a large system vocabu-
lary: in the above example, a system that did not know any spi... words could immediately
rule out epi... in favor of spy..., but a system with more complete coverage would have to
look further into the input before it could identify the correct choice.

1.2.4. Reduplication

Some languages display a kind of change called reduplication that often does not lend
itself to analysis by the kinds of mechanisms that are appropriate for the other processes that
have been mentioned here. Reduplication proce ses involve the copying of consonmts, vowels,
syllables, roots, or other subunits of words. Na.h (1980:136ff) describes a reduplication process
in Warlpiri that copies the first two syllables of a verb mid has various semantic effects. For
example, he cites the sentence

pirli ka parnta-parnta-rri-nja-mpa ya-ni

hill PRES croucli-REDUP INF-across go-NONPAST
The mountain eztends in a series of humps.

41f y always changes to I after p. what jtstificaticti couol there be for .nyiug that spy and not spi is the
correct muderlyiug form? In this trivial construicted ex.uujle, there is norn. lit nui actual lauginage, there could
he evidence from a variety of sourcs: .nuftixes begitning with y: harnony procenns. rules that create or destroy

the p that triggers the change; rules that are triggered by the y before it clamngc; mid no forth.
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in which the verb stem parntarri- haa undergone reduplication.' Lieber's (1960:2341F) dis-
cussion of several reduplication processes in the language Tagalog provides other extamples.
One Tagalog reduplication process copies the first consonant aid vowcl of the stem, making
the copied vowvel short; another ip similar, but makes the copied vowel long; a third process
copies the first syllable and part or all of the second, lengthening the copied vowel of the second
syllable. See also McCarthy's (1982:193f) treatment of reduplication in Classical Arabic.6

* %Thw hiyplafrni in the Waripiri examplem awe inserted as an analytical aid for the reader, and do not. conform
to the Ptioward orthography (HiJe. 1082:222).

'uMcCarthya. tresstznieut of Arabic is 4sf theoretical interet for at lesot two resous: it brlps illmniAnae the
nlature of liigititic representations. anil it ohowis a way to derive staat characteristics of Arabic reduplication
from univermil linguistic principles rather than lea piage-particular stiptilations.

4



2. Two-Level Morphology

Given a description of the root forms, the combinatory patterns, and the spelling-change
rules of a language, the morphological analysis task is well-defined in an abstract sense. How-
ever, a practical morphological analyzer also needs an efficient way of putting its linguistic
knowledge to use in actual processing. The KIMMO system described by Karttuncn (1983)
is attractive for this purpose. KIMMO is an implementation of the "two-level" model of mor-
phological analysis that Kimmo Koskenniemni proposed and developed in his Ph.D. thesis. 7

Spelling-change rules are encoded in a finite-state automaton component, while roots and af-
fixes are listed with their co-occurrence restrictions in a dictionary component. The focus
here is on the automaton component. (Reduplication processes find rio easy treatment in the
KIMMO system, and will henceforth be ignored.)

2.1. The Automaton Component

The two-level model is concerned with the representation of a word at two distinct levels,

as they might show uip in text. At the lexical level, words consist of sequences of stems,

affxes dacrtis, ndboundary markers that have been pasted together without spelling
chne.Thus Karttunen and Wittenburg (1983) represent the surface form tries as try's

attelexical level. Similarly, the Warlpiri surface form ki j ika might be represented at the
lxcllevel as kI~ jI-ka, where I is a special lexical character that can surface as either I or

uaccording to harmony rules.

2.1.1. Expressing Spelling Changes as Two-Level Automata

A spelling-change rule in the two-level model is expressed as a constraint on the corre-
spondence between lexical and surface strings. For example, consider a simplified "Y-Change
process that changes y to i before adding es. Y-Change can be expressed in the two-level
model as a constraint on the appearance of the lexical -surface pairs y/y and y/i. Lexical y
must correspond to surface i rather than surface y when it occurs before lexical +s, which will
itself come out as surface es due to the operation of other constraints.

Each constraint is encoded as a finite-state iiachine with two scanning headIs that move
along the lexical and surface strings in parallel. The machine starts out in state 1.atid at each
step of its operation, it changes state based on its current state wud the pair of characters it
is scanning. The automaton that encodles the Y-Cliange constraint would be described by the

* 7 University of Helsinki, Finland, ciaz Fall 1083.

5



following state table:

"Y-Change" 5 6
y y + a (lexical characters)
1 y = a = (surface character.)

state 1: 2 4 1 1 1 (normal state)
state 2. 0 0 3 0 0 (require +a)
state 3. 0 0 0 1 0 (require s)
state 4: 2 4 6 1 1 (forbid +s)
state 5: 2 4 1 0 1 (forbids)

In this notation, taken from Karttunen (1983) following Koskenniemi, - is a certain kind of
wildcard character. The use of : rather than . after the state-number on some lines indicates
that the : states are final states, which will accept end-of-input. In order to handle insertion or
deletion, it is also possible to have a null character 0 on one side of a pair,8 but the possibility
of nulls will not be given full consideration until section 6.

In processing the lexical-surface string pair try's/tries, the automaton would ran
through the state sequence 1,1,1,2,3,1 and accept the correspondence. In contrast, with the
string pair try+s/tryes it would block on s/s after the state sequence 1,1,1,4,5 because the
entry for s/z in state 5 is zero. With the pair try/tri it would not block with any zero
entries, but would still reject the pair because it would end up in state 2, which is designated
as non-final.

These examples illustrate how the Y-Change automaton implements dependence on the
right context +a. The automaton will accept either of the correspondences y/i and y/y, but
if it processes the y/i correspondence, it will enter a sequence of states that will ultimately
block unless the y/i pair is followed by the appropriate lexical context +a. The right context
for a vowel harmony process might eem more difficult to encode because it may be necessary
to ignore several intervening consonants, but such a situation actually presents no problem at
all. An automaton state can easily ignore irrelevant characters by looping back to itself.

2.1.2. Multiple Spelling-Change Processes

A language will generally exhibit several different spelling-change processes; for example,
Karttunen (1983:177) mentions that Koskenniemi's analysis of Finnish uses 21 rules. By and
large, these, separate processes can be encoded as separate automata in the KIMMO system.
In actual processing, the automata that express various spelling-change constraints will all
inspect the lexical-surface correspondence in parallel. The corresptmdeuce will he accepted
only if every automaton accepts it - that is, if it satisfies every constraint. 9 Because the
anitrnAta are connected in parallel rather than in series, there art, no "feeding" relationships
between two-level automata."' Figure I illustrates the parallel arrangement of the KndMO

"The ;wtdtia KIMMO systen, of Karttunen (1983) does not allow null characters at the lexical level, but the
onsitoion is inessential (Karttuneu. p.c.).

"If null chairacters are allowed, the interpretation of %atisfying every constrait" takes on a certain subtlety.
Ser orction 6.

"'It is a theoretical claim of the two-levcl franmework that interniediate levels of represet.tatiim und *feelineg

relationhilm are not necessary - that two) levels suffice, in other words. Series connection of the automata

6
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. triea .
Figure 1: The automaton component of the KIM MO systom consists of several two-headed finite-state
automata that inspect the lexical-surface correspondcnc(! in parallel. Each automaton imposes some
constraint on the correspondence. The automata move together from left to right. (From Kart-
tunen, 1983:176.)

automata. A set of several automata can also be compiled into a single large automaton that
will run faster than the original set, though its size may be prohibitive (:176f).

2.2. The Dictionary Component

The dictionary component of the KIMMO system is divided into sections called lezicons,
which are all ultimately reachable from a distinguished root lezicon. In the dictionary-level
proccssing for words such as singing, KIMMO first locates the lexical form sing in the root

lexicon. The mechanism for indicating co-occurrence restrictions involves listing a set of con-
tinuation lexicons for each entry, and in this case one possibility will be a lexicon that contains
*ing. In the actual operation of the KIMMO system, dictionary processing is efficiently inter-
leaved with the operation of the automata in such a way that the two components mutually

constrain their operations.

The continuation-class mechanism that the KIMMO dictionzry uses to encode co-occurrence
restrictions among roots and affixes has only finite-state power; each lexicon corresponds to a
state in a transition network. As nmuy people have noticed (e.g. Karttunen, 1983:180; Kart-
tunen and Wittenburg. 1983:222f), such a design makes it difficult or impossible to expresn
soine morphological constraints. In the future, the KIMMO dictionary component will almost

would imply the existence of internnediate representation levels at the interface betweeu aiitomata. Beyond the
qiiestion of computationial efficiency, the theoretical claitis of the two-levl nmodel -will not be evaluated here.
P osible argunicnts agaiist them could involve (a) rnle orderings with depth - 1. (h) particular analyses in
which the availability of only two lvels leads to redumndmcy in the autoiiata., uwd (r) multi-part alternative
repremctations (e.g. froto autosegiremtal theory) that allow a more ilhm: uinating dese ription of various linguistic
processes. Oe possible argmnent for thein cotld involve the tmltiplicity of possibilitics for rule ordering in a
snodel witi iitermnediate derivational steps.



certainly be redesigned.

The automaton component rather thau the dictionary component of the KIMMO system is
the main object of attention here, md little more will be said about the dictionary component
until section 7.1.

2.3. Generation and Recognition

A KIMMO system does not particularly lean toward either generating or recognizing the
words of a language. Since the machines of the automaton component just express constraints
on permissible lexical-surface correspondences, they can serve equally well to determine the
h,xical form of a surface word (recognition) or to map a lexical stein with aflixes into the
proper surface form (generation). The only major difference is whether the process is driven
by the surface or lexical form. However, the recognition algorithm is slightly more complicated
because it uses the lexicon as well as the automata to constrain the analysis of an input word.
(As Karttunen (1983:184) notes. it would require only a simple change to run the recognizer
without the constraints of the stem lexicon. Such a mode of operation would be useful for
stripping recognizable suffixes from unfamiliar roots.)

8
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3. The Seeds of Complexity

The use of finite-state machinery gives the two-level model the appearance of comnputa-
tional efficiency, but in the worst case a KIMMO generator or recognizer has a lot of work
to do. This section probes possible sources of complexity, while the next section will exploit
them in mathematical reductions that answer the question of how hard KIMMO generation
and recognition can be in the general case.

3.1. The Lure of the Finite-State

*At first glance, the KIMMO system raises hopes of unfailing efficiency. Both recognition
and generation seem to be a matter of stepping finite-state machines through the input from
left to right, a process that takes only a quick array reference or so per character. Any

* nondeterminism that might arise causes little initial concern, since methods of determinizing
finite-state machines are well-known. Lexical lookup can also be done quickly, character by
character, interleaved with the speedy left-to-right progress of the automata:

It is a common technique to represent lexicons as letter trees because it minimizes
the time spent on searching for the right entry. The recognizer only makes a single
left-to-right pass as it homes in on its target in the lexicon. (Karttunen, 1983:178)

- The fundamental efficiency of finite-state machines promises to make the speed of KIMMO
processing for a language largely independent of the nature of the constraints that the automata
encode:

The most important technical feature of Koskenniemi's and our implementation of
the Two-level model is that morphological rules are represented in the processor as
automata, more specifically, as finite state transducers .... One important conse-
quence of compiling [the grammar rules into automatal is that the complexity of the
linguistic description of a language has no significant effect on the speed at which
the forms of that language can be recognized or generated. This is due to the fact
that finite state machines axe very fast to operate because of their simplicity .... Al-

.d though Finnish. for example. is morphologically a much more complicated language
than English, there is no difference of the same magnitude in the processing times
for the two languages .... [This fact) has some psycholinguistic interest because of
the common sense observation that we talk about "simple" and "complex- languages
but not about "fast" and "slow" ones. (:166f)

In order for the automaton-based two-level model to be of psycholinguistic interest in this
way, it must be the model itself that wipes out processing difficulty, rather than some acci-

qdental property of the constraints that the automata encode. In much the same vein, Lind-
stedt (1984:171) remnarks following Koskennienmi that "it is psycholinguistically interesting to
note that the [two-level] rules are equivalent to such conputationally simple and effective [i.e.
efficient] devices," again picking out the finite-state machinery as the factor responsible for

computational efficiency.

N 5" 9
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3.2. Sample Recognizer Behavior

In assessing the computational characteristics of the KIMMO processing algorithms, it is
logical to begin with an example. Figure 2 shows the operations that a KIMMO recognizer

for English goes through when it analyzes the word *piel. From inspecting the sequence of
lexical forms that are considered, it is clear that the recognizer does more than just gliding
from left to right through the string.

For example, at step 7 the recognizer is considerihtg the lexical string spy+, y surfacing as
i and + as e, under the theory that the input word might be a plural form of the noun spy -
spies or spies', that is. At step 9 that analysis has failed to pan out and spy+ is considered
again, this time with + coming out null on the surface instead of matching the input e. At
step 11 the recognizer has dropped back to the form spy that it was considering at step 4, this
time taking the root as a verb. All of the spy possibilities ultimately fail, and at step 52 the

recognizer finally tries spi instead, repudiating the incorrect choice that it made in step 3. In
step 53 it assumes that the e in the lexical form spit... might have been deleted, but this

idea soon founders. Finally, in step 59 it finds the correct lexical entry spiel.

3.3. Sources of Runtime Complexity

Traces of recognizer operation reveal several factors that combine to determine the overall
computational difficulty of an analysis. The recognizcr must run the finite-state machines of
the automaton component and descend the letter trem that make up a lexicon, it must decide

which suffix lexicon to explore after finding a root, and it must discover the correct lexical-
surface correspondence.

3.3.1. Stepping through the automata and the lexicon

First of all, sonic of the recognizer's activities are concerned with the mechanical operation
of the automata and the letter trees of the lexicon. Running the automata is expected to
be fast; there are many well-known fast implementations of finite-state machines, differing
somewhat in their time and space requirements. Descending a letter tree should also be easy,
in any of its common implementations.

3.3.2. Choosing among alternative lexicons

Second, the recognizer often makes unfortunate choices about the path that it should
* follow through the collection of lexicons in the dictionary component. Quite a few nodes in

the search tree of Figure 2 represent choices among alternative lexicons (LLL). For example,
at step 11 the recognizer may search any of several lexicons next: the lexicon I that encodes
the fact that the present indicative of a verb may have no added ending, the lexicon AC that
contains the agentive ending +er, or one of several other lexicons that contain +ed and other

inflectional endings.

The tearch for a path through the suffix lexicons of the dictionary component can take

considerable tinie in the current KIMMO inplenntation. However, such wandering can be

10



Recognizing surface form "spiel".
1 s 1.4.1.2.1.1
2 sp 1.1.1.2.1.1
3 spy 1.3.4.3.1.1
4 "spy" ends. new lexicon N
5 "0" ends. new lexicon CI ---------LLLLL+ I1+
6 spy XXX extra input +XXX
7 (5) spy+ 1.5.15.4.1.1
a spy+ XXX - +- XXX+
9 (5) spy+ 1.6.1.4.1.1

10 spy+ XXX LLL+ITI+
11 (4) "spy" ends. new lexicon I 1
12 spy XXX extra input LLL+---+XXX+
13 (4) "spy" ends. new lexicon P3 /
14 spy+ 1.6.1,4.111 -+XXX+

N 15 spy+ XXX I
16 (14) spy+ 1,5.16.4.1.1 LLL--''"-XXX+
17 spy' XXX X+18 (4) "spy" ends. new lexicon PS
19 spy+ 1.6.1.4.1.1
20 spy+e 1,1,1,1o4,1 '-AA
21 spy+ XXX LIL+--------XXX+
22 (20) spy+e 1.1.4.1.3.1 I
23 spy+@ XXX -!-+XXX+
24 (19) spy' 1.6.16.4.1.1
25 spy+e XXX Epenthesis --- +AAA+
26 (4) "spy" ends, new lexicon PP
27 spy+ 1.6.1.4.1.1 ILL+---+XXX+
28 spy+e 1.1.1.1,4.1-+XXX+
29 spy+* XXX I
30 (28) spy+e 1.1.4.1.3,1
31 spy+e XXX LLL -------- XXX

32 (27) spy'+..64,. -!-'XXX'
33 spy'* XXX Epenthe!s
34 (4) "spy" ends. new lexicon PR -+AAA+
35 spy+ 1.6.1.4.1.1
36 spy+ XXX LLL'---'XXX'
37 (35) spy' 1.5.16.4.1.1 I
38 spy+ XXX --- XXX
39 (4) "spy" ends. new lexicon AG
40 spy' 1.6.1.4.1.1
41 spy+e 1.1.1.1.4.1
42 spy+ XXX -'- ---LLL+LLL+00
43 (41) spy'e 1.1.4.1.3.1 +
44 Spy+ XXX.
45 (40) spy+ 1.5.16.4.1.1
46 spy+e XXX Epenthesis
47 (4) "spy" ends, new lexicon AB
48 spy+ 1.6.1.4,1.1
49 spy+ XXX Key to tree nodes:
50 (48) spy' 1.5.16.4.1.1
51 spy+ XXX -- normal traversal
52 (3) api 1.1.4.1.2.5 LLL new lexicon
53 pis 1.1.16.1.6.1 AAA blocking by automate
54 $pie XXX XXX no lexical-surface pairs
65 (53) spie 1.1.16.1.5.6 compatible with surface
56 spiel 1.1.16.2.1.1 char and dictionary
57 "spiel" ends. new lexicon N III blocking by leftover Input
58 "0" ends, new lexicon C1 "00 analysis found
59 "spiel" *00 result
60 (68) spiel+ 1.1.16.1.1.1
61 spiel+ XXX

(("spiel" (N SG)))

Figure 2: These traces show the steps that the KIMMOrecognizer for English goes through while
analyzing the surface form spiel. Each line of the table on the left shows the lexical string and
automaton states at the end of a step. If sonic autoniaton blocked. the autoniaton states are replaced
by an XXX entry. Ai XXX entry with no altoi iaton niune indicates that the lexical string could not
be extended becase the Rurfir, ('lin#actcr wid lexical letter tree tofether ruled out all fe sible pairs.
After an XXX or *** entry, the recoginizer backtr;wks and picks up from a prcviois choice point.
indicated by the parenthesized step inber bIefore the lexical string. The tree on the right depicts
the search graJ)hic;aly. rcading fromn left to right aid top t) bttoi with vertical bars linking the
choices at aclh choice point. The figures were genrated with a KIM M) ihildeiltcnttatioi written in an
a gente version (or MACIISl'I.Lwd initially on Kartrtunen*s (1983:182Hf) idgoritlin description; the
dictionary aid antomiatonl ceoillre'nlts for English were taken frolil Karttuianv ald Wittenlnlrg (1983)
with iznor chau.ges. This inipleuentation searches diepth-first iw Karttun i's does, but explores the
alternatives at a given depth in a different order fromi Karttunen's.
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Recognizing surface form "spiel'.
1 s 1.4.1.2.1.1
2 sp 1.1.1.2.1.1
3 spy 1.3.4.3.1.1
4 "spy" ends. new lexicon (/1)
5 "0" ends. new lexicon (Cl)
6 spy XXX extra input
7 (5) spy+ 1.5.16.4.1.1 ---+---+---+LLL+LLL+1II+
a spy+ XXX

9 (5) spy+ 1.6.1.4,1.1 --- +XXX+
11 (4) 'spy" ends. new lexicon (/V) IJ
12 sPY XXX extra Input
13 + spy+ 1.6.1.4.1.1 LLL+111+
14 spy+e 1.1.4.1.4.1 1
15 spy+e XXX -
16 (14) spy+e 1.1.4.1.3.1 I--+XXX+
17 spy+0 XXX 1
18 (12) spy+ 1.5.16.4.1.1 ---+AAA+
19 spy+e XXX Epenthesis
20 (3) spi 1.1.4.1.2.5 ------ XXX+

21 spie 1.1.16.1.6.1 I
22 spie XXX "+ +LLL+LLL+000+
23 (21) spie 1.1.16.1.5.6 -
24 spiel 1.1.16.2.1.1 +xxx+

25 "spiel" ends. new lexicon (IN)
4 26 "0" ends. new lexicon (Cl)

27 "spiel" 00e result
28 (26) spiel+ 1.1.16.1.1
29 spiel+ XXX

(("spiel" (U SG)))

Figure 3: The dictionary modification that will be described in section 7.1 causes the KIMMO rec-
ognizer to make fewer choices anong kxicons. These traces show the steps that the recognizer goes

- " through in the analysis of spiel when the inerged dictionary is used; the number of lexicon-choice
nodes (LLL) is lower than in Figure 2. The names of the merged lexicons are written in parenthe-
sized formni to indicate that each one actually represents a clams of lexicons in the original dictionary
description. A + entry in the backtracking column indicates backtracking from an immediate failure
in the previous step. which does not require the full backtracking mechanism to be invoked.

sharply reduced by merging the lexicons in such a way that several lexicons can be searched

in parallel; section 7.1 will explain in detail. Meanwhile, taking this improvement for granted

will make it possible to sidestep the problem and focus on other processes. With the merged
dictionary, Figure 3 shows that the number of lexicon--choice alternatives in the search tree for
spiel is reduced from 8 to 2,"1 cutting the total number of steps from 61 to 29. (The choice
between spy-noun and spy-verb remains because it would be directly reflected in the output,
but the Imrely internal choices among the lexicons for different verbal endings are eliminated.)

3.3.3. Finding the lexical-surface correspondence

Finally, some of the backtracking results from local ambiguity in the construction of the
hrireal- surface correspondence. Even if only one p1xaibility is globaly compatible with the

constraints inmposed by the lexicon mid the automata, there may not be enough evidence at
every point in processing to choose the correct lexical- surface pair; search behavior results.

'Thee figures count LLL nodes excluding unsnbiguous cheices.
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s/s p/p yll I/)(I)

+--LLLLLL+LLLLLL+1111111+

------XXXXXKX4

--+10 +XXX+
..- -.. xxxxxxx,

+/0 i/O----------....... XXXXXXX

+1 /0 -+XXXXXXX+

--....+AAAAAAA+

i 1 e/O
.-..... + .-.. +XXXXXXX+

ee 1/1 (/N1) (CL1)

....--+-- .- +LLLLLLL+LLLLLLL+SSS

Jo... .. -+XXXXXXX+

(("splel- (N SB)))

Figure 4: This expanded version of the search tree from Figure 3 shows what hypothesis the KIMMO
recognizer is entertaining along each path, during the analysis of spiel with a merged dictionary.

Figure 4 displays the search graphically with an expanded version of the merged-lexicon search

tree from Figure 3, annotated with information about the specific choices the recognizer has

at each point.

Thus, after seeing the surface characters spi..., the recognizer did not have enough
evidence to choose between the lexical possibilities spy.., and spi..., even though only

one analysis was possible for the complete input spiel. During exploration of the spy...
possibility in the (/V) lexicon, there was uncertainty about the pairs +/0, +/e, e/O, and

e/e. It proved unprofitable to explore those regions of the tree in the analysis of spiel, but

Figures 5 and 6 show that the correct analysis can lie in those regions for other words.

Similarly, in analyzing the word rubbish (Figure 7), the recognizer cannot tell after
seeing only rubb... whether the lexical string is rubb.. as in rubbish or rub+... as in

rub+ing -=> rubbing. In fact, it briefly considers the possibility that surface r... might

correspond to lexical re'... as in the stress-marked lexical representation re'fer, but it
quickly discovers that the right context for licensing the e/0 pair is absent. (Recall from
section 2.1.1 how a KIMMO automaton implements a chamgc that depends on right context:
initially it permits the changed pair in the expectation that the proper right context will be
found, mid upon processing the changed pair, it enters a state-sequence that will eventually
block without the necessary right context.)

In these cases, misguided search subtrees did not get very deep - largely because the

relevant spelling-cliange processes were local in character. Long-distance harmony processes

are also possible (§ 1.2). mid thus there c"an potentially be a long interval before the acceptability
Sof ai lexical-.surfawc pair is nlt iinately deterIi('d. For example. when vowel alternations within

a verb stein tre conditioned by the occurrelnce of particular tense sullixes. it inay be ucessary

i1



/s pip / /It LiN tC LL) 1 1 1 1
- --- -4- -----.LL LLL+LLLL.IlZ

+/0

LLLLI~LIXII.

*/0 0/0

j s~g~,d/d

siC
--- +AAAAAAA+

I 1 0/0
------ XXKEXX.X

---- +XNKXEXZ4

(("spy+ed" (V PAST PIT)) ("svg.d* (V PAST)))

Figure 5. The search tree for spied is sinilar to the search tree for spiel (Figure 4), hut the solution
ben in a different region of the tree. Neither part of the search can be elimiinated, since either one nay

contain the solution.

S/s- .1. LLLLLLLLL#L1l1lI3J

- I

------------------------ ------------ Cxxx1,00$0

(/V)
LLL LL.11111114

+10 0/0
-- 4- - -- xxKZxx 4.------ -- ---- --XKXXXX4

---------------------------------------- AAAAAAA.

--------------------------------------------------- XXfXZ4.X

((*spy~s* (V PRES SG 3RD)) (*spy+%* (N PL)))

Figure 6: In the analysis of spies. the location of the solution in the search tree is different from its
location for spiel (Figure 4) or 'spied (Figure 5). Thus acne uf the three maiu regions of the tree
can be pruined from the search.
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Recognizing surface form "rubbish".
I r 1.1.1.2.1.1 12 + rub+l 1.1.1.1,2.5
2 re 1.1,1.1.4.1 13 rub~i XXX
3 re' XXX Elision 14 (6) rubb 1.1,16.2.1.1
4 (2) ru 1.1.4.1.2.1 15 rubbi 1.1.16.1.2.5
6 rub 1.1.6.2.1.1 16 rubbls 1.4.16.2.1.1
6 'rub' ends, new lexicon (/V) 17 rubbish 1.3.16.2.1.1
7 rub XXX extra input 18 *rubbish" ends, new lexicon (/18 + rub+ 1.1.3.1.1.1 19 '0" ends, new lexicon Cl)
9 rub+e XXX Gemination 20 "rubbish" 00 result
10 (7) rub+ 1.1.2.1.1.1 21 (19) rubbish+ .. 6...
11 rub+e XXX Gemination 22 rubbish+ XXX

(("rubbish* (N SO)))

Figure 7: While analysing the surface form rubbish. the KIM MO rccognizer is temporarily misled
(i) by the possibility that a lexical e' might have been deleted at the surface and (ii) by the possibility
that the surface bb inight have resulted fromi doubling of a single unj(.rlying b. However, in each case
the possibility fails to pan out. (Refer to Figure 2 for an explanatiop of the table format.)

to see the end of the word before making final decisions about the stem. 12 The possibility of
a long period of uncertainty forms the basis for the reductions in section 4.

3.4. Search and Verification

Setting aside until section 7.1 the problem of choosing asnong alternative lexicons, it is
easy to see that the use'of finite-state machinery helps control only one of the two remaining
sources of complexity. Stepping the automata should be fast, but the finite-state framework
does not guarantee speed in the task of guessing the correct lexical-surface correspondence.
The search required to find the correspondence may predominate.

In fact, the KBMa~O recognition and generation problems bear an ominous resemblance
to problems in the computational class Xi P. XW P consists of tOlc problems that can be solved
on a )londeterministic Turing machine within Polynomial timep. Informally, a problem in MIP
has a solution that may be hard to guess (hence the use of norideterministic machines) but is
easy to verify (in polynomial time):

[Informally,] we view [a nondeterministic algorithm] as being composed of two sep-
arate stages, the first -being a guessing stage and the second a checking stage ....

(Garey and Johnson, 1979:28)
It should be evident that a "polynomial time riondeterministic algorithm" is basically
a definitional device for capturing the notion of polynomial timec verifiability, rather
than a realistic method for solving (lecision problems. (:29)

This difference in difliculty between guesmsing and verification sems to fit the KIMMO frame-
work: the flnite-state two-level automata can verify a solution quickly, but it may still be hard
to guess the correct lexical-surface correspondence.

"m Since long-distance right context is part of the problein, it has been suggesited that Kim MO processing in
the probleniatic crn.A's would he' easier if carried ont fr'uin right to le'ft. However. Ilie nire comminon le'ft context
would theu cause difficult iis, and what. could be done abotit ulixed rule tsy.st Cuts ill WhiCh lioth left illid right
context plity a role? In fact. the reductions in section 4 show that no simple fix will help inl the general case.

15

1.



It is not always apparent from local evidence how to construct a lexical-surface corre.
spondence that will satisfy the constraints imposed by a set of two-level automata: thus the
KIMMO algorithms contain the seeds of complexity. The next sections will exploit those seeds
in mathematical reductions that prove KhIMO recognition and generation are computation-
ally difficult in the worst case. The finite-state two-level framework itself does not guarantee
computational efficiency.

16
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4. The Complexity of Two-Level Morphology

The reductions in this section show that two-level automata can describe computationally
difficult problems in a very natural way. It follows that the two-level framework itself cannot
guarantee computational efficiency. If the words of natural languages are easy to analyse,
the efficiency of processing must result from some additional property that natural languages
have, beyond those that are captured in the two-level model.13 Otherwise, computationally
difficult problems might turn up in the two-level automata for some natural language, just an
they do in the artificially constructed languages here. In fact, the reductions are abstractly
modeled on the KIMMO treatment of harmony processes and other long-distance dependencies
in natural languages (see §§3.3.3,1.2).

4.1. The SAT Problem

The reductions involve versions of the Boolean satisfiability problem (SAT). An instance
of SAT consists of a Boolean formula in conjunctive normal form (CNF), and the question to
be answered is whether there is a way of assigning values (T,F) to the variables so that the
formula comes out true. Thus the formulas

X

(Z V V)&Z V Y)
(Yv V )&(jg V Z)&(y V !)&(x V Y V X)

are satisfiable, while the formulas

z&Y

(X V i)&(z V ji)&z
(X V V V z)&(y V 7)&(2 V Z)&(y V Y)&(j V z)&(! V V)

are unsatisfiable. The SAT problem is ii P-complete mid thus computationally difficult. The
related problem 3SAT is a restricted case of SAT in which every disjunction must have exactly
three disjuncts. (This restricted form of CNF is known as 3CNF.) 3SAT is also At P-complete,
though 2SAT is not.14

4.2. KIMMO Generation is XP-Hard

It is easy to encode an arbitrary SAT problem as a KIMMO generation problem. The
general problem of mapping from lexical to surface forms in KIMMO systems is therefore .P-
hard, i.e. IP-complete or worse (see section 6). Formally. define a possible instance of the
computational problem KIMMO GENERATION as axzy pair (A, (r). where A is the automaton
component of a KIMMO system specified as in Gajek et al. (1983) ;uid ey is a string over the
alphabet of the KIMMO system. An actual instance of KIMMO GENERATION will be any

por more extensive theoretical discussions of efficient processability, see Berwick and Weinberg (1082),
Barton (1085a), and references cited therein.

'48AT wim the first problein to be proved .NP-complete (Cook's Theorem, 1071). The .P-conipleteness of
3SAT is also well-known. For details, see Garey and Johnson (1979) or any standard textbook.

17



"z-consistency" 3 3
* z a (leziceal characters)
T F - (surface characters)

1: 2 3 1 (X undecided)
2: 2 0 2 (X true)
3: 0 3 3 (zfalse)

Figure 8: The KIMMOgenerator system that encodes a SAT formula V, should include a consistency
automaton of this form for every variable z that occurs in p. The consistency automaton constrains
the mapping from variables in the lexical string to truth-values in the surface string, ensuring that
whatever value is assigned to z in one occurrence must be assigned to z in every occurrence.

"satisfaction" 3 4
a . - , (leical characters)
T F - . (surface characters)

1. 2 1 3 0 (no true seen in this group)
2: 2 2 2 1 (true seen in this group)
3. 1 2 0 0 (-F counts as true)

Figure 9: The SAT generator system for any formula should include this satisfaction automaton, which
determines whether the truth values assigned to the variables cause the formula to come out true.
Since the formula is in CNF, the requirement is that the groups between commas must all contain
at least oue true vulue. In state 1, no true value has Lceml seen; F cycles, while T goes to state 2 to
wait for the comma. that begins the next group. State 3 remembers a preceding minus sign so that
-F can count as true. Only state 2 is a final "state because only state 2 indicates that a true value has
occurred.

possible instance (A. a) such that for some o', the lexical-surface pair a/a' satisfies the con-
straints imposed by the automata in A. Thus (A, o) is an instance of KIMMO GENERATION
if there is any surface string that can be generated from the lexical string o according to the
automata. (As the problem is defined, an algorithm is not required to exhibit the surface
strings that can be generated, but only to say whether there are any.)

To encode a SAT problem ip as a pair (A,a), first construct a from the CNF for-
mula o by a notational translation. Use a minus sign for negation, a comma for conjunc-
tion, md no explicit operator for disjunction. Then the o corresponding to the formula
(I V y)&(g V z)&(x V y V z) is -xy,-yzxyz. The notation is unambiguous without paren-
theses because ip is required to be in CNF.

Second. construct A (in polynomial time) in three parts. (A varies from formula to formula
only when the formulas involve different sets of variables.) The alphabet specification should list
the variables in a together with the special characters T, F, ininus sign, and comma. The equals
sign should be declared as the KIMMO wildcard ch.ractcr, as usual. The consistency automata,
one" for each variable in a. should be constructed as in Figure 8. The satisfaction automaton
should he copied from Figure 9 mid does not vary from formula to formula. Figure 10 lists
the entire SAT generator system A for formulas io that use variables z, V, and z.

The generator system used in this construction is set up so that surface strings are identical

18



"x-conststeacy" 3 3
ALPHABET x y z T F x. . T F

ANY 1: 2 3 1
ENO 2: 2 0 2

3: 0 3 3

y-consistency* 3 3

T F
1: 2 3 1
2: 2 0 2
3: 0 3 3

Figure 10: This is the complete KIMMO generator •ZCnsistecy 3 3

system for solving SAT problems in the variables T F
x, y, and z. The systtem includes a consistency an- 1: 2 3 1
tomaton for each variable in addition to a satisfac- 2: 2 0 2
tion automaton that does not vary from problem 3: 0 3 3
to problem. "satisfaction" 3 4

1. 2 1 3 0
2: 2 2 2 1
3. 1 2 0 0

END

to lexical strings, but with truth values substituted for the variables. Thus any surface string
generated from a will directly exhibit a satisfying truth-assignment for V. The consistency
automaton for each variable x ensures that the value assigned to x is consistent throughout
the string. In state 1, no truth-value has been assigned and either n/T or n/F is acceptable.
In state 2, n/T has been chosen once and therefore only n/T can be permitted for other
occurrences of x. Similarly, state 3 allows only z/F. All of the states of the n-consistency
automaton ignore punctuation marks and variables other than z. The satisfaction automaton
blocks if any disjunction contains only F and -T after truth-values have been substituted for the
variables; thus the satisfaction automaton will end up in a final state only if the truth-values
that have been assigned satisfy every disjunction and hence V.

The net result of the constraints imposed by the consistency and satisfaction automata
is that some surface string can be generated from o just in case the original formula v has
a satisfying truth-assignment. Furthermore, the pair (A,o) can be constructed in time poly-
nomial in the length of p; thus SAT is polynomial-time reduced to KIMMO GENERATION,
and the general case of KIMMO GENERATION is at least as hard as SAT. Figure 11 traces
the operation of the KIMMO generation algorithm on a sati.fiable formula; note that the gen-
erator goes through quite a bit of search even though there turns out to be only one answer.
Figure 12 shows what happens with an unsatisfiable formula.

4.3. KIMMO Recognition is i/P-Hard

Like the generator, the KIMMO recognizer can be used to solve coniputationally diffi-
cult problems. KIMMO recognition and KIMMO generation are both JV P-hard. To treat the
recognizer formally, define a po.sible instance of the computational probleni KIMMO RECOG-
NITION as any triple (A, D,a), where A mid a are m-s before, uid D is the dictionary coinpo-
jaiite of a KIMMO system described as specified in Gajek t al. (1983). An actual instance of
KIMMO RECOGNITION will be my possille instance (A, D.a) .such that for wme a', (i) the
lexical- surface pair a'/a satisfies the coirtraints imposed by the antomata in A as before,
mid (ii) ,' can be generated by the dictionary component D. Thus (A, D, a) is an instance of
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G nerating from lexical form "-xy.-yz.-y-i.xYz.-

1 1.1.1.3 38 + -FF.-FT.-F-T.FFT 3.3.2.2
2 -F 3.1.1.2 39 "-FF.-FT.-F-T.FFT" 000 result
3 -FF 3.3.1.2 40 (3) -FT 3.2.1.2
4 -FF. 3.3.1.1 41 -FT. 3.2.1.1
6 -FF.- 3.3.1.3 42 -FT.- 3.2.1.3
6 -FF.-T XXX y-con. 43 -FT.-F XXX y-con.
7 -FF.-F 3.3.1.2 44 + -FT.-T 3.2,1,1
a -FF.-FF 3.3.3.2 45 -FT.-TF 3.2.3.1
9 -FF.-FF. 3.3.3.1 46 -FT.-TF. XXX satis.

10 -FF.-FF.- 3.3.3.3 47 (45) -FT.-TT 3.2.2.2
11 -FF.-FF.-T XXX y-con. 48 -FT.-TT. 3.2.2.1
12 + -FF.-FF.-F 3.3.3.2 49 -FT.-TT.- 3.2.2.3
13 -FF.-FF.-F- 3.3.3.2 50 -FT,-TT.-F XXX v-con.
14 -FF.-FF.-F-T XXX 2-con. 51 + -FT.-TT.-T 3.2.2.1
15 + -FF.-FF.-F-F 3.3.3.2 52 -FT.-TT.-T- 3.2.2.3
16 -FF,-FF.-F-F. 3.3.3.1 53 -FT.-TT.-T-F XXX 1-con.
17 -FF. -FF.-F-FT XXX x-con. 54 + -FT.-TT.-T-T 3.2.2.1
18 + -FF,-FF.-F-F.F 3,3.3.1 55 -FT.-TT.-T-T. XXX sOtis.
19 -FF.-FF.-F-F.FT XXX y-con. 56 (2) -T 2.1.1.1
20 + -FF.-FF.-F-F.FF 3.3.3.1 57 -TF 2.3.1.1
21 -FF. -FF,-F-F.FFT XXX z-con. 58 -TF. XXX satin.
22 + -FF,-FF.-F-F.FFF 3.3.3.1 69 (67) -TT 2.2.1.2
23 -FF. -FF.-F-F.FFF XXX satis. nf. 60 -TT. 2.2.1.1
24 (8) -FF.-FT 3.3.2.2 61 -TT.- 2.2.1.3
25 -FF.-FT. 3.3.2.1 62 -TT.-F XXX y-con.
26 -FF.-FT.- 3.3.2.3 63 + -TT.-T 2.2.1.1
27 -FF.-FT.-T XXX y-con. 64 -TT.-TF 2.2.3.1
28 + -FF.-FT.-F 3.3.2.2 65 -TT.-TF. XXX satis.
29 -FF.-FT.-F- 3.3.2.2 66 (64) -TT.-TT 2.2.2.2
30 -FF.-FT.-F-.F XXX a-con. 67 -TT.-TT. 2.2.2.1
31 + -FF -FT.-F-T 3.3.2.2 68 -TT.-TT.- 2.2.2.3
32 -FF. -FT.-F-T. 3.3.2.1 69 -TT.-TT.-F XXX y-con.
33 -FF.-FT.-F-T.T XXX x-con. 70 + -TT.-TT.-T 2.2.2.1
34 + -FF.-FT.-F-T.F 3.3.2.1 71 -TT.-TT.-T- 2.2.2.3
35 -FF.-FT.-F-T.FT XXX y-con. 72 -TT.-TT.-T-F XXX 2-con.
36 + -FF.-FT.-F-T.FF 3.3.2.1 73 + -TT.-TT.-T-T 2.2.2.1
37 -FF. -FT.-F-T.FFF XXX z-con. 74 -TT.-TT.-T-T. XXX satiS.

(-FF.-FT.-F-T.FFT")

Figure 11: The KIM MOgenerator system of Figure 10 goes through these steps when applied to the
encoded version of the (satisfiable) formula (Y V g)&('j V z)&(g V i)&(z V V V x). Though only one
truth-assignment will satisfy the fornula, it takes quite a bit of backtracking to find it. The notation
used here for describing generator actions is similar to that used to describe recognizer actions in
Figure 2, but a surface rather than a lexical string is the goal. As in figure 7, a *-entry in the
backtracking column indicates backtracking from an hnmediate failure in the preceding step, which
does not require the full backtracking mechanism to be invoked.

KIMMO RECOGNITION if a is a recognisable word according to the constraints of A and
D.

Many reductions are possible, but the reduction that will be sketched here uses the 3SAT
problem instead of SAT. It. also uses an encoding for CNF formulas that is slightly different

from the one used in the generator reduction. To encode a SAT problem j as a triple (A, D,o),
first construct a from o by a new notational translation. This time, treat a variable z and
its negation 1 as separate, atomic characters. Continue to use a comma for conjunction and
no explicit operator for disjunction, but now add a period at the end of the formula. Then

the a corresponding to the formula (Y V Y V y)&(g V P V z)&(z V p V z) is xy,7yzxyz.,
a string of 12 characters. (With 3SAT, the commas are redundant, but they are retained here

in the interest of readability.)

Second. construct A (in polynomial time) in two parts. (As before, A varies from formula
to formula only when the formulas involve different sets of variables.) The alphabet speifi-
cation should list the variables in a' together with their negations and the special characters

T. F. comma, and period. The equls sign should again be d(eclared as the KIMMO wildrard

character. The consistency automata, still one for each variable in a', should be constructed

20

. -... '



Go eratin~ from lexical form, "z.--Z. Z FTT.-T.-? 3.1.1.1 FT.T i xc"
2 FF 3.3.1.1 72 + FTT. -F 3.2.2.2
3 FFF 3.3.3.1 73 FTT,-F- 3.2.2.2
4 FFF. XXX satis. 74 FTT.-F-F XXX i-co".
5 (3) FFT 3.3.2.2 75 + FTT,-F-T 3.2.2.2
* FFT. 3.3.2.1 76 FTT.-F-T, 3.2.2.1
7 FFT.- 3.3.2.3 77 FTT, --.- 3.2.2.3
8 FFT.-T XXX X-con. 78 FTT.-F-T.-T XXX rn-con.
9 + FFT.-F 3.3.2.2 79 + FTT.-F-T. -F 3.2.2.2
to FFT.-F- 3.3.2.2 so FTT.-F-T. -FF XXX i-con.
11 FFT.-F-F XXX i-con. 81 + FTT.-F-T. -FT 3.2.2.2
12 + FFT.-F-T 3.3.2.2 82 FTT.-F-T.-FT. 3.2.2.1
13 FFT.-F-T. 3,3.2.1 83 FTT.-F-T.-FT. - 3.2.2.3
14 FFT.-F-T.- 3.3.2.3 84 FTT.-F-T.-FT.-F XXX v-con.
15 FFT.-F-T.-T XXX rn-con. 85 + FTT.-F-T. -FT,-T 3.2.2.1
16 + FFT.-F-T.-F 3.3.2.2 86 FTT.-F-T,-FT.-T- 3.2.2.3
17 FFT.-F-T.-FF XXX Z-con. 8? FTT. -F-T. -FT. -T-F XXX i-con.
is + FFT.-F-T.-FT 3.3.2.2 88 + FTT.-F-T, -FT.-T-T 3,2.2.1
19 FFT.-F-T.-FT. 3.3.2.1 89 FTT.-F-T.-FT.-T-T. XXX sails.
20 FFT.-F-T.-FT.- 3.3.2.3 90 (1) T 2.1.1.2
21 FFT. -F-T.-FT.-T XXX y-con. 91 TF 2.3.1.2
22 + FFT.-F-T.-FT.-F 3.3.2.2 92 TFF 2.3.3.2
23 FFT.-F-T.-FT.-F- 3.3.2.2 93 TFF. 2.3.3.1
24 FFT.-F-T.-FT.-F-F XXX i-con. 94 TFF. - 2.3.3.3
25 + FFT,-F-T,-FT.-F-T 3.3.2.2 95 TFF.-F XXX i-con.
26 FFT.-F-T.-FT.-F-T. 3.3.2.1 96 + TFF. -T 2.3.3.1
27 FFT.-F-T.-FT.-F-T.- 3.3.2.3 97 TFF.-T- 2.3.3.3
28 FFT. -F-T.-FT.-F-T.-T XXX y-con. 98 TFF.-T-T XXX i-con.
29 + FFT.-F-T.-FT.-F-T.-F 3.3.2.2 99 + TFF.-T-F 2,3.3.2
30 FFT.-F-T.-FT.-F-T.-FF XXX i-con. 100 TFF.-T-F. 2.3.3.1
31 + FFT.-F-T.-FT.-F-T.-FT 3.3.2,2 101 TFF.-T-F.- 2.3.3.3
32 FFT.FT.-FT.-FT.-FT. 3.3.2.1 102 TFF.-T-F.-F XXX i-con.
33 FFT.-F-T.-FT.-F-T.-FT.- 3.3.2.3 103 + TFF.-T-F.-T 2.3.3,1
34 FFT, -F-T, -FT.-F-T.-FT,-F XXX i-con. 104 TFF. -T-F.-TT XXX i-cont.
35 + FFT.-F-T.-FT.-F-T.-FT.-T 3.3.2.1 105 + TFF.-T-F.-TF 2,3,3,1
36 FFT.-F-T.FT-F-T.-FT.-TT XXX y-con. 106 TFF,-T-F. -TF, XXX salls.
37 + FFT.-F-T.-FT.-F-T.-FT.-TF 3.3.2.1 107 (92) TFT 2.3.2.2
38 FFT.-F-T.-FT.-F-T.-FT.-TF XXX salls. nf. 108 TFT. 2.3.2,1
39 (2) FT 3.2.1.2 109 TFT.- 2.3.2.3
40 FTF 3.2.3,2 110 TFT,-F XXX i-con.
41 FTF, 3,2.3.1 111 + TFT.-T 2.3.2.1
42 FTF.- 3.2.3.3 112 TFT,-T- 2.3.2.3
43 FTF. -T XXX i-con. 113 TFT,-T-F XXX i-con.
44 + FTF.-F 3.2.3.2 114 + TFT,-T-T 2.3.2.1
45 FTP. -F- 3.2.3.2 115 TFT.-T-T. XXX salls.
46 FTF.-F-T XXX i-con. 116 (91) TT 2.2.1.2
47 + FTF.-F-F 3.2.3.2 117 TTF 2,2,3,2
48 FTF.-F-F, 3.2.3.1 118 TTF. 2.2.3.1
49 FTF.-F-F.- 3.2.3,3 119 TTF.- 2.2.3,3
50 FTF.-F-F.-1 XXX i-con. 120 TTF.-F XXX i-con.
51 + FTF.-F-F.-F 3.2.3,2 121 +' TTF.-T 2.2.3.1
52 FTF,-F-F.-FT XXX i-con. 122 TTF. -T- 2.2.3.3
53 + FTF.-F-F.-FF 3.2.3.2 123 TTF.-T-T XXX i-con.
54 FTF.-F-F.-FF. 3.2.3.1 124 + TTP.-T-F 2.2.3.2
55 FTF.-F-F.-FF.- 3.2.3,3 125 TTF.-T-F. 2.2,3.1
56 FTF.-F-F,-FF.-F XXX y-con. 126 TTF,-T-F.- 2.2.3,3
57 + FTF. -F-F.-FF.-T 3.2.3.1 127 TTF.-T-F. -F XXX i-con.
58 FTF.-F-F.-FF.-T- 3.2.,3 128 + TTF,-T-F.-T 2.2.3.1
59 FTF.-F-F.-FF,-T-T XXX i-con. 129 TTF,-T-F.-TT XXX i-con.
60 + FTF.-F-F.-FF.-T-F 3.2.3.2 130 + TTF. -T-F.-TF 2.2.3.1
61 FTF.-F-F.-FF.-T-F. 3.2.3.1 131 TTF, -T-F.-TF, XXX sais.
62 FTF.-F-F.-FF.-T-F,- 3.2.3.3 132 (117) TTT 2.2.2.2
63 FTF.-F-F, -FF.-T-F.- F XXX Y-con. 133 TTT. 2.2.2.1
64 + FTF,-F-F.-FF.-T-F.-T 3.2.3.1 134 TTT.- 2.2.2.3
65 FTF.-F-F,-FF.-T-F.-TT XXX i-con. 135 TTT. -F XXX i-con.
66 + FTF.-F-F.-FF.-T-F.-TF 3.2.3.1 136 + TTT,-T 2,2.2.1
67 FTF.-F-F.-FF.-T-F. -TF. XXX sais. 137 TTT.-T- 2.2.2.3
68 (40) FTT 3,2.2.2 138 TTT.-T-F XXX i-con.
69 FTT. 3.2.2.1 139 + TTT.-T-T 2,2.2.1
70 FT. - 3.2.2.3 140 TTT.-T-T, XXX sais.

NIL

Figure 12: The KIM MO genecrator systen of Figure 10 goes through 140 steps~ before verifying that the
formula (z v y v Z)&(! v v)( VZ)&(jV v i)&(v v z)&(! v y) ham no satisfCying truath-un~signiuictat.
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Y j

zx-consistency" 3 5
T T F F - (lexical characters)
x 1 x Y - (surfaGee characters)

1: 2 3 3 2 1 (z undecided)
2: 2 0 0 2 2 (z true)
3: 0 3 3 0 3 (z false)

Figure 13: The KIMMO recognizer system that encodes a 3SAT formula ip should include a consistency
automaton of this form for every variable x that occurs in o. As ini the generator reduction, the
consistcncy automiaton constrains the inapping fromn variables to truth-values, ensuring that the value
asisied to x is consistent throughout the formula. However, in the recognizer reduction the automaton
must also ensure that the values assigned to x and i are opposites, since x and 1 are treated as atomic
alphabet characters.

ALTERNATIONS
(Root £Root)

(Punct *Punct)

('U)

END

LEXICON Root TTT Punct
TTF Punct
TFT Punct "

TFF Punct ~
FTT Punct *

FTF Punct ~
FFT Punct

LEXICON Punct * Root

END

Figure 14: The 3SAT recognizer system for any formula should include this dictionary component,
which ensures that thc truth-values assigned to the variables in the surface string will cause the
formula to come out true. AU combinations of three truth values are listed, except for the value FFF
that would cause one of the 3CNF disjunctions to be false: the samne dictionary component is used for
a 3SAT probkins. Ba.ch lexicon entry sp)ecifies the continuation class of lexicons that can follow. For
instance, the class Punct containing only the lexicon Punct is the continuation class of TTT, while the
class of . is the emhpty continuation class S. "I' is an empty feature set, used since no word features
are being recovered in this mathematical reduction. The detailed format of the dictionary component
is described in Gsajek et at. (1963).

as in Figure 13. There is no satisfaction automaton in this version of the recognize.

4 Fiiially, take D as a constant from Figure 14. In this reduction, D impoes the satisfaction
constraint that was enforced with an automaton in the generator reduction. Formula ip will
he satisfied if! all of its conjuncts are satisfied, mid since W is in 3CNF, that means the truth-
values Pussigned within each disjunction must be TTT, TTF, .. ,or anmy combination of three

* truth-values excep~t FFF. This is exactly the constraint imposed by the dlictionary. (Note that
D is the same for every 3SAT problem; it does not grow with the size of the formula or the
nuimber of variables.)

(Compared to the generator reduction, the rol". of the lexical and surface strings are
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reversed in the recognizer reduction. The surface string encodes V, while the lexical string
indicate% truth-values for its variables. The consistency automaton for each variable z still
ensures that thc value assigned to x is consistent throughout the formula, but now it also
ensures that x and i are assigned opposite values. As before, the net result of the constraints
imposed by the various components is that (A, D.a) is in KIMMO RECOGNITION just in
case p has a satisfying truth-assignment. The general case of KIMMO RECOGNITION is at
least as hard as 3SAT, hence at least as hard as SAT or any other problem in .M P (in the
sense of polynomial-time rcduction).
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5. The Effect of Precompilation

The reductions presented in section 4 require both the langoage description and the input
string to vary with the SAT/3SAT problem to be sqlved. Hence, there arises the question

of whether some computationally intensive form of precompilittion could blunt the force of
the reduction, paying a potentially exponential compilation cost once and allowing KIMMO
runtime for a given grammar to be uniformly fast thereafter, This section examines four
aspects of the precompilation question.

5.1. Conversion to GMACHINE/RMACHINE Form

The external description of a KIMMO automaton or lexicon is not the same as the form
that is used by the generation or recognition algorithm at runtime. Instead, the external de-
scriptions are used to construct internal forms: IMACItINE and (QMACHINE forms for automata,

and letter trees for lexicons (Gajck et al., 1983). Hence one question to address is whether the
complexity implied by the reduction might actually apply to the construction of these internal
forms. If this were true, then the complexity of the generation problem (for instance) would
be concentrated in the construction of the "feasible-pair list" and the GMACHINE.

It is possible to deal with this question directly by reformulating the reduction so that the
formal problems and the construction specify machines in terms of their internal (e.g. GMA.

CHINE) forms instead of their external descriptions. The GMACIUNEs for the class of machines

created in the construction have a very regular structure, and it is easy to build them directly

instead of building descriptions in external format. As Figure 11 also suggested, it is runtime
processing that makes translated SAT problems difficult for a KIMMO system to solve.

5.2. BIGMACHINE Precompilatlon

There is also another kind of preprocessing that might be expected to help. As men-
tioned in section 2.1.2, it is possible to compile a set of KIMMO automata into a single large
automaton that will run faster than the original set. The system will usually run faster with
one large automaton than with several small ones, since it has only one machine to step and
the speed of stepping a machine is largely independent of its sixe. However, in the worst case
the merged automaton is prohibitively large, exponentially larger than the smaller machines

(Karttunen, 1983:176).

Gajek et al. (1983) use the terms DIGGMACHINE and DIG RMACIIINE to refer to the gener-
ation and recognition ver.4ions of a large merged automaton, ad therefore such an automaton
will be called a BIGMACHINE. Since it can take exponential time to build the DIGMACHINE

for a translated SAT problem, the reduction formally allows the possibility that BIGMACHINS
precompilation could make runtime processing uniformly efficient.

However, an expensive DIGMACHINE precomipilation step doesn't help runtime processing
enough to change the fundamental complexity of the algorithms. Recall from section 3.3 that
the ain ingredients of KIMMO runtime complexity are the mechanical operation of the an-
ton ata, the difficulty of finding the correct lexical-surface correspondence, mad the necessity
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of choosing among alternative lexicons. DIGMACHINE precompilation will speed up the me.
chanical operation of the automata, perhaps by a factor equal to the number of variables in
the SAT query. However, it will not help in the task of deciding which lexical/surface pair will
be globally acceptable. The DIGMACHINE will be as linited as the equivalent automata in its
forecasting abilities. Precompilation oils the machinery, but doesn't accomplish fundamental
redesign.

5.3. BIGMACHINE Size and the Interaction of Constraints

BIGMACHINE precompilation sheds light on another precompilation question as well. It
is known that the compiled DIGMACHINE corresponding to a set of KIMMO automata can be
exponentially larger than the original system in the worst case; for example, such blowup
occurs if the SAT automata are compiled into a DIGMACHINE. In practice, however, the size
of the BIGMACHINE varies - thus naturally raising the question of what distinguishes the
"explosive" sets of automata from those that behave wore tractably.

It is sometimes suggested that the degree of interaction among constraints determines
the amount of DIGMACHINE blowup. In this view, a large BIGMACHINE for a SAT problem is
no surprise, for the computational difficulty of SAT and similar problems results in part from
their "global" character. Their solutions generally cannot be deduced piece by piece from
local evidence; instead, the acceptability of each part of the solution may depend on the whole
problem. In the worst case, the solution is determined by a complex conspiracy among the
constraints of the problem. Thus the large DIGMACHINE gives a more "honest" estimate of
problem difficulty than the small collection of individual automata.

However, a slight change in the SAT automata demonstrates that BIGMACHINE size need
not correspond to the degree of interaction among the automata. Eliminate the satisfaction
automaton from the generator system, leaving only the consistency automata for the variables.
Then the system will not search for a satifying truth-assigment, but merely for one that is
internally consistent - that is. one that never assigns both T and F to the same variable in its
different occurrences. This change will entirely eliminate the interactions among the automata;
each automaton is concerned only with the assigments to its particular variable, and there is no
way for an assignment to one variable to influence the acceptability an assignment to another.

Yet despite the elimination of interactions, the BIGMACHINE must still be exponentially
larger than the collection of individual automata. Since the states of tie BIGMACHINE must
distinguish all the possible truth-assignments to the variables, its size must be exponential in
the number of individual automata. In fact, tie lack of interactions can actually increase the
number of states in the DIGMACHINE. Interactions among the automata constrain the com-
binations of states that can be reached, thus reducing the nwnber of accessible combinations
below the mathematical upper limit.

5.4. Transducers and Determinizatlon

One more precompilation question is whether the nondeterminism involved in constructing
the lexical surface corre.spondence cmi't be removed by standard determinization techniques
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Figure 15: This nondeterninistic finite-state transducer cannot be determiniscd. An equivalent de-
ternunistic FST would have to wait for the end of the input string before generating any output.
However, at that point it would have to remember how nmany as or bs to output in correspondence
with the unbounded number of zo in the string - an impossible task for a finitc-state device.

for finite-state machines. After al, every nondeterministic finite-state machine has a deter-

ministic counterpart that is equivalent in the sense that it accepts the same language. i s Aren't
KIMMO automata just ordinary finite-state machines operating over an alphabet that happens
to consist of pairs of characters?

It is indeed possible to view KidMO automata in this way when they are being used to
verify or reject hypothesized pairs of lexcal and surface strings." However, in this use they
don't need dcterminizing: they are already deterministic, for there is only one new state listed
in each ccl of the description of a KIMMO automaton. In the cases of primary interest -
generation and recognition - the machines are being used as genuine transducers rather than
acceptors.

The determinizing algorithms that apply to finite-state acceptors will not work on trans-
ducers. Indeed, many finite-state transducers are not determinisable at all. For example,
consider the transducer in Figure 15. On input mzazna it must output aaaaaa, while on input
zxzzzb it must output bbbbbb. An equivalent deterministic finite-state transducer is impossible.
A deterministic transducer -ould not know whether to output a or b upon seeing x. However,
it also could not output nothing and put off the decision until later: being finite-state, it would
not in general be able to remember at the end how many occurrences of x there had been, so
it would not be able to print the right number of initial occurrences of a at 6.

For similar reasons, there is no way to build deterministic finite-state transducers for the
SAT problems. Upon seeing the first occurrence of a variable, a deterministic transducer could
not know in general whether it should output T or F. However, it also could not wait and output
a truth-wlue later, for there might be an tubounded number of occurrences of the variable

'5 But not in the sense that it amigns the @ane patwo to the strings of the language, where a parse according to
a finite-,tate machine is the wquence t state traversed - a point related to the inpossibility of determinising
trmsducers.

"This statement ignores any subtleties having to do with the proceuing of nulls, which will be dicused
later 0fO).



before there was sufficient evidence to assign the truth-value. A finite-state transducer would
not be able in general to remember how many truth-value outputs had been deferred.
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6. The Effect of Nulls

Since KIMMO systems can encode .V P-complete problems, the general KIMMO generation
and recognition problems are at least as hard as the computationally difficult problems in
.WP. But could they be even harder? The answer depends on whether null characters are
allowed. If null characters are forbidden, the problems are in AWP, hence (given the previous
)P-hardness result) NP-complete (§6.1). If null character% are completely unrestricted, the
problems are PSPACE-complete, thus potentially even harder than the problems in )/P (§6.2).
However, the full power of unrestricted null characters is not needed for linguistically relevant
processing. Continuing to explore the effect of KIMMO null characters, section 6.3 mentions a
subtle point - with computational consequences - about the interpretation of the KIMDO
constraint-intersection operation when nulls are involved.

6.1. A/P-Completeness Without Nulls

The generation and recognition problems for KIMdO automata without nulls are MP-
complete. Since section 4 showed that the problems were .NP-hard, all that remains is to
show that a nondeterministic machine could solve them in polynomial time. Only a sketch of
the proofs will be given.

Given a possible instance (A, a) of KIMMO GENERATION, the basic nondeterminism
of the machine can be used to guess the surface string corresponding to the lexical string a.
The automata can then quickly verify the correspondence. The key fact is that if A allows no
nulls, the lexical and surface characters must be in one-to-one correspondence. The surface
string must be the same length as the lexical string, so the sise of the guess can't get out of
hand. (If the guess were too large, the machine would not run in polynomial time.)

Given a possible instance (A, D,a) of KIMMO RECOGNITION, the machine should
guess the lexical string instead of the surface string; as before, its length will be manageable."7

Now, however, the machine must also guess a path through the dictionary. The number of
choice points is limited by the length of the string,1 ' while the number of choices at each point
is limited by the number of lexicons in the dictionary. Given a lexical-surface correspondence
and a lexicon path, the automata and the dictionary component can quickly verify that the
lexical/surface string pair satisfies all relevant constraints.

17 When nulls are allowed as in the next section, the machine must also guess where to insert 0 characters into
the surface string. Because of the way the automata operate, the strings that are submitted to the automata
for verification must include the nulls.

I"Nulls in the lexicon do not have the same interpretation as null# in the automata. Nulls should not occur
in the dictionary, except in "null lexicon entries" that are written as 0 in their entirety. Unlike nulls in the
aut onaton component, which are treated as genuine characters by the automata, null lexicon entries are merely
a notational device and can be removed in the course of constructing letter trees from the lexicons. Thus the
number of choice points in the lexicon data-structure is limited by the length of the lexical string even when
oulls are permitted.
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6.2. PSPACE-Completeness with Unrestricted Nulls

If nulls are completely unrestricted, the arguments of section 6.1 do not go through. The
problem is that unrestricted null characters allow the lexical and surface strings to differ wildly
in length. The time it takes to guess or verify the lexical-surface correspondence may no longer
be polynomially bounded in the length of the input string.

In fact, it is easy to show that KIMMO RECOGNITION wiTh unrestricted null characters

is PSPACE-complete - at least as hard as any problem that can be solved in polynomial space.
Though the question is open, PSPACE-complete problems are likely to be even harder than
)IP-complete problems.

Not only is a PSPACE-complete problem not likely to be in P, it is also not likely to
be in X¢ P. Hence a property whose existence question is PSPACE-complete probably
cannot even be verified in polynomial time using a polynomiail length "guess." (Garey
and Jolumon, 1979:171).

Thus the wont case of KIMMO RECOGNITION becomes extremely difficult if null charac-
ters are completely unrestricted. (Incidentally, PSPACE includes such problems as deciding
whether a player has a forced win from certain N x N checkers or Go configurations. 1)

The easiest PSPACE-completeness reduction for KIMMO RECOGNITION with unre-
stricted nulls involves the computational problem FINITE STATE AUTOMATA INTERSEC-
TION (Garry and Johnson, 1979:266). A possible instance of FSAI is a set of deterministic
finite-state automata over the same alphabet. The problem is to determine whether there is
any string that is accepted by all of the automata. Given a w.tt of automata over alphabet
E, construct a corresponding KIMMO RECOGNITION problem as follows. Let a and b be
new characters not in E, and take the KIMMO alphabet to be E U {a,b).2

' Declare = as the
wildcard character and 0 as the null character.

Then build the rest of the automaton component in two parts. First, include the following
"main driver" automaton:

"Main Driver" 3 3

a b - (lezical characters)
a b 0 (surface characters)

1. 2 0 0 (want a)
2. 0 3 2 (let automata run)
3: 0 0 0 (got ab; final state)

This will accept the surface string ab, allowing arbitrary lexical gyrations between a and b
as long as they come out null on the surface. Second, for each of the automata in the FSAI
problem, translate it directly into a KIMMO automaton by pairing the original characters from
E with surface nulls. Also add columns for a/a and b/b, with entries zero unless otherwise
specified. Bump all of the state numbers up by two. Let the new start state accept only a/a,

'9A few restrictions on the problens are necessary in order to show membership in PSPACE. For details,
we Garey and Johumou (1070: 173.256f) and references cited therein.20The reduction cmi also be clone without a and b, but they are inclded beccause the resulting reduction is
more reminisccnt of ordiniry processing problenn in which the qiw-.tion arims of how uanay inals to hypothesise

ktmcw character@.
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going to 3 (the old start state). Let only state 2 be a final state, but for every state that was
final in the original automaton, give it a transition to 2 on b/b.

Third, let the root lexicon of the dictionary component contain a lexicon entry for each
single character in E U (a. b). The continuation clans of each entry should send it back to the
root lexicon, except that the entry for b should list the word-final continuation clas # instead.
Finally, take ab as the surface string for the KIMMO RECOGNITION problem. Surface a
will start up the translated versions of the original automata, which will be able to run freely
in between the a mid the b because the characters in E all get paired with surface nulls. If
there is some string that all of the original automata accept, that lexical string will send all of
the translated automata into a state where the remaining b is acceptable. On the other hand,
if the original intersection is empty, the b will never become acceptable and the recognizer will
not accept the string ab.

This construction fornis one half of the PSPACE-completeness proof, but it is also nec-
esosary to show that KIMMO RECOGNITION is no harder than problems in PSPACE. It
is sufficient to transform arbitrary KIMMO RECOGNITION problems into FSAI problems.
Given a recognition problem, first convert the dictionary component into a large automaton
that (i) constrains the lexical string in the same way the dictionary componaet does, pairing
lexical characters with surface wildcards, but (ii) allows nulls to be inserted freely at the lex-
ical level, in case the other automata permit lexical nulls. The conversiqu can be performed
because the dictionary component is finite--tate. Second, convert the input string into an
antomaton as well. The input-string automaton should (i) constrain the surface string to be
exactly the input string, but (ii) allow surface nulls to be inserted freely. Third, expand out
all wildcard and subset characters in the automata, then interpret each lexical/surface pair
at the head of an automaton column as a single character in an extended alphabet. Given
this preparation, it is possible to solve the original recognition problem by solving FSAI for
the augmented set of automata. Since the input string is now encoded as an automaton,
the intersection of the languages accepted by all the automata consists of all the permissible
lexical--surface correspondences that reflect recognition of the input string. The intersection
will be nonempty - as FSAI tests - if and only if the input string is recognizable.

The PSPACE-completeness proof showsk that if null characters are completely unrestricted,
it can be very hard for the recognizer to reconstruct the superficially null characters that may
lexically intervene between two surface characters. However, unrestricted nulls surely are not
needed for linguistically relevant KIMMO systems. Processing complexity can be reduced by
any restriction that prevents the number of possible mlls between surface characters from
getting too large. As a crude approximation to a reasonable constraint, the above reduction
could be ruled out by forbidding entire lexicon entries to come out null on the surface. 2' A
quitable restriction would make the KIMMO generation and recognition problems only P-
complete rather than PSPACE-complete.

2*1RCAIl frout footnote 18 that an entry 000 in the dictionary in not the mune as a dictionary entry that b

entirely deleted at the mrface by the automatan
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6.3. The Intersection of Constraints

The null characters (0) that can appear in a KIMMO automaton allow the recognizer to
advance without consuming any characters from the input word. For example, in analysing the
word hoed as hoeed, the automata advance as if the surface string were hoOOed (see Karttunen
and Wittenburg, 1983:220), postulating surface nulls freely as required by the constraints of
the system. However, the interpretation of 0 as the empty string involves some subtlety when
multiple constraints are involved.

Internal to a KIMMO automaton, 0 is treated the same as any other character, but 0 is
effectively deleted at the interface to the surface string or the dictionary component. Abstractly
speaking, the treatment of nulls by the KIMMO recognizer involves two steps: (i) null characters
are inserted freely into the surface string to produce a form like hoO0ed; (ii) this augmented
string is used to run the automata. Thus, a KIMMO automaton can be considered to define
both an internal constraint (relating the augmented strings with 0 characters inserted) and
an external constraint (relating the strings as they stood before 0-insertion).

This distinction becomes important when there is more than one automaton in a KUJMO
system. The notion of "satisfying every constraint" could refer to intersecting either the
internal or the external versions of the constraints defined by the automata. If the external
languages are intersected, different automata can disagree about the placement of nulls. (This
corresponds to interpreting null characters as ordinary empty strings (epsilons, e), since the
number of occurrences of the empty string between any two characters is indeterminate.) On
the other hand, if the internal forms of the constraints are intersected, all the automata must
agree on the number of nulls and their positions.

The actual KIMMO system performs internal intersection of the constraints defined by the
automata. Ron Kaplan 2 has pointed out that this subtle distinction in the interpretation of
KIMMO nulls has computational consequences. If the various constraints of a KIMMO system
were subject to external rather than internal intersection, thus interpreting KIMMO nulls as
ordinary epsilons, then DIGMACHINE precompilation would not be generally possible.

Since BIGMACHINE precompilation produces a single large finite-state transducer as out-
put, the intersection operation that it implicitly implements must always map finite-state
constraints into finite-state constraints. External intersection does not have this property, and
therefore BIGMACHINE precompilation would not be generally possible if external intersection
were used. Specifically, Kaplan has called attention to the following finite-state relations over
lexical-surface pairs:

A (a/b)*(0/c) °

and B (O/b)'(a/c)"

Each of these relations is easy to encode in a KIMMO automaton, but their external intersection

A n B= {a"/b"c")

cannot be defined by any KIMMO autonraton, large or snall, despitc its finite-state origins.

"Kaplan's remarks wer. nmle in a talk pre~ented to the Workshop on Finite-State Morphology, Center for
the Study of Language and Information, Stanford University, July 20 30, 1985.
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This example makes crucial use of the fact that external intersection allows different
automata to disagree about the placement of nulls; under internal intersetion (e.g. in the

current Kh4DMO system) no nontrivial lexical-surface Pair satisfies both of the constraints. For
instance, A will reject the external string pair aa/bbcc except as aaOO/bbcc, while D Will
rejct it except as O0aa/bbcc. Since internal intersection requires all automata to agree about
the placement of nulls, aa/bbbb will be rejected under internal intersection.

The computational consequences of the distinction between internal and external inter-
section become more severe when KIMMO systems are generalized slightly. For example, If
KIMMO automata are generali"e to use three levels instead of two, and if certain other sml
changes are made, then the recognition problem becomes computationaly undeeildk nder
external intersection (Barton, 1985b).
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7. Improving KIMMO Dictionary Efficiency

One final matter remains. Despite the fact that navigation through the lexicons of the
dictionary component can account for quite a bit of backtracking in the current KIMMO system,
the previous sections gave little attention to that problem. Instead, section 3.3.2 promised that
the dictionary component could be changed in such a way that most of the choice points would
be eliminated. This section explains how.

7.1. Subdivisions of the Dictionary

Naturally, there would be no need to choose among alternative lexicons if the dictionary
were not subdivided. In the existing KIMMO system, subdivisions are needed for two reasons.
First, the continuation-class mechanism is the only means for expressing co-occurrence restric-
tions among roots and affixes, and a continuation class is a set of lexicons. Second, incorrect
dictionary search paths can be recognized and pruned more quickly when sufflxes are stored
separately from roots.

The existing continuation-class mechanism makes the lexicon the finest unit of discrimi-
nation between suffixes. If a, x, V are dictionary entries such that the sequence ax is possible
but ay is not, this constraint will be impossible to capture unless z and V are listed in separate
lexicons; if they are in the same lexicou, it will be impossible for the continuation class of
a to include x but not y. Thus the need to express co-occurrence restrictions leads to the
use of multiple lexicons. For example, Karttuen and Wittenburg (1983:224) must list -ed
and -or in separate lexicons because of such contrasts as doer/*doed. In the special case
of separated dependencies, the weakness of the current continuation-class mechanism leads
to a large amount of duplicated structure in the multiple lexicons that must be constructed
(Karttunen, 1983:180).

Small lexicons are also advantageous for pruning search, since it can become apparent
very early that no acceptable suffix starts out with the letters at hand. For instance, if none of
the suffixes that can attach to the current word start with a, it is pointless to search beyond
an a in the input (ignoring spelling-change rules here). If the legal suffixes for the current
class of word are stored in a separate lexicon, the letter-tree version of the lexicon will not
be searched beyond an a. However, if they are listed with many other suffixes such as -able,
the search will not be aborted until later - possibly not until the end of a suffix, when the
combinatory features of the suffix can be checked.

Unfortunately, multiple lexicons slow analysis down quite a bit in the current version
of KIMMO. Each of the lexicons in a continuation class is searched separately. The first few
characters beyond a lexicon choice point tend to get reanalyzed several times, with that portion
of the lexical-surface correspondence worked out afresh each time. If z, y above are stems (N,
V, etc.) instead of suffixes - that is, ifa is a prefix - then the root lexicon becomes subdivided.
In such a situatiou, the separate searching of the different portions of the root lexicon becomes
especially serious. Much storage is also wausled (Karttmien aind Wittenburg, 1983:221f).

In some cases, however, the current finite-state lexicon structure cannot capture the proper
co-occurrence restrictions even if duplication tuid inefficiency can be tolerated. Prefixes gen-
erally apply only to words of particular clahses, thus making it necessary to have separate
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lexicons for the various classes of words involved. But since prefixes and suffixes can pro-
ductively form new words of various classes (for instance, -ize farsms verbs), it may not be
possible for a lexicon to list them all. Formally speaking, if both prefixes and suffixes (i) are

fully productive, (ii) can change the categories of words arbitrarily, and (iii) can attach to only
particular categories of words, then separated dependencies can arise that exceed the power of

a finite-state lexicon structure. In such cases, context-free rules of uome kind might be better

suited to the hierarchical word-structures that are involved. Alternatively, it might be prefer-
able to subdividc the problem by enforcing only crude finite-state combinatorial constraints

while figuring out the lexical-surface correspondence, then filterhig the analyses in a more

sophisticated way afterward.

7.2. Merging the Lexicons

The number of separate lexicon searches can obviously be reduced if there is only one

lexicon. Roots and affixes can all be listed together, with the ccambinatory possibilities of

various elements indicated by a feature system. Such a feature system can be used whether or

not the existing finite-state dictionary framework is replaced with -something more powerful.

Within the existing framework, each lexicon name can be interpreted as a feature; the
continuation class of each entry is then taken to specify the possible lexicon features of its

immediate successor in the word. Alternatively, a more powerful framework might be modelled
after the linguistic framework of Lieber (1980). Context-free macinery of some kind could

implement the recovery of hierarchical structure, the application of Lieber's feature-percolation
conventions, and the enforcement of combinatory restrictions. Common grammar-processing

techniques could be used to predict at each boundary the set of permissible combinatorial
features (the continuation class) of the next segment of input.

As noted, however, merging the lexicons in this way has the disadvantage that it prolongs
some dictionary searches that would have failed early with more finely-divided lexicons. At

modest cost in time and space, this disadvantage can be eliminated by adding bit vectors to
the internal letter-tree form of the lexicon. The bit vector associated with a link in the letter
tree indicates which classes of words or affixes can be found in the subtree below. Bit vectors
should also be associated with the output& of the tree.

The bit-vector scheme makes it possible to search in parallel through all of the lexicons in
a continuation class. The implementation will no longer interpret a continuation class in terms
of the individual letter-trees of several lexicons; instead, a continuation class will correspond
to an encoded set of lexicon names for use in descending the single merged letter-tree. Before
descending a branch (or using an output), it is necessary to check whether there is a non-null
intersection between the lexicons comprising the desired continuation class and the lexicons
accessible down the branch. On many computers. this test can be carried out in a single
instruction, if the number of lexicons in the dictionary is small (e.g. < 32). Search should
termninate if the intersection is null. With the "virtual" split lexicons provided by the bit-vector
-cheme, a failing search can terminate just as early in the lexical string &A it will with lexicons
that have individual letter-trees: Figure 16 shows an idealised illustration. In an actual system,
the dictionary would have more finely divided lexicons than N and V, especially for suffixes.

An implementation of this dictionary scheme was used to generate the traces shown in
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{N, V}

* 11 / v
/IN, V)

t 11

*1 M0 1

N V N V
Figure 16: If separate letter trees for nouns and verbs are merged as on the left, failing searches may
be prolonged unnecessarily. Assuming that no nouns are acce.sible down the kil... branch of the
merged tree, it is useless to traverse that branch if only a noun is acceptable in the current context.
However, the fruitlessness of the branch may not be apptrent uutil the end of an entry (e.g. kill)
is reached and category features are available. In the letter tree on the right, each link has been
augmented with a bit-vector that indicates the classes of entries that are accessible down the link.
The bit-vectors enable the system to terminate a failing tenrch without going any further down the
tree than it would with unmerged lexicons. In this case, the kil.. subtree would not be searched
because the intersection of {V) and {N} is null.

Figure 3 and succeeding figures. Without the merged dictionary, the recognizer for English
locates a suffix in the continuation class /V by doing a separate letter-tree descent for each of
the lexicons P3, PS, PP, PR, I, AG, and M. With the merged dictionary, the recognizer needs
only one letter-tree descent in the virtual lexicon (/V) = {P3, PS, PP, PR, I, AG}, thus reducing
the number of steps needed to analyze an input. Finely divided lexicons (hence continuation
classes with several members) are typically necessary for capturing co-occurrence restrictions
even in approximate form, and consequently the merged dictionary almost always speeds up
recognizer operation. Finally, even though it takes extra space to augment links and outputs
with bit-vectors, the merged dictionary can also save space by sharing structure among what
would otherwise be separate letter trees. El
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